“十三五”以来,中石油、中石化、万华化学、华谊化工、国家电网、宝武钢铁等国内流程行业领头者开展了数字化、智能化建设,加快数字化油田、智能炼厂、智慧电网、智慧炼钢等建设。信息化与自动化互相交织融合,积累了大量的工业数据,给以油田开发、石油石化、化工、钢铁、电力为代表的流程工业带来了新的挑战与机遇,也为其创新带来了新的技术能力。本书以大数据治理、大数据分析为主线,以油气开发、石油石化、化工、钢铁、电力为代表的流程工业大数据创新为分支,详细阐述了大数据分析在流程工业中的应用案例和今后的发展趋势。为广大的流程工业界研究人员、企业管理者、工程技术专家提供了一本不可多得的涵盖数字化转型、大数据分析的学习材料。

作者

张晨,上海交通大学信息系统博士,高级工程师。在上海赛科石油化工公司担任IT部总经理。出版专著《信息系统项目治理理论与实践》。在《系统管理学报》等发表论文5篇。论文《机器学习在石化行业设备预测上的应用》等获得中国石油学会2018年信息技术大会论文一等奖。《大数据在设备健康预测和备件补货中的应用 》被《中国机械工程》2019年第2期录用刊登。蒋若宁长期从事化工信息化规划和设计工作。参与国家重点项目计算机集成制造项目(CIMS)的实施和有关智能工厂建设方案设计和规划工作。参与完成上海市科委《大数据挖掘和云计算技术在氟化工生产过程中的应用》等项目。何冰,上海交通大学应急管理博士,国网上海市电力公司检修公司高级工程师,国家电网公司级优秀专家、上海市五一劳动奖章获得者、上海市首席技师,长期从事电网智能运维检修及大数据分析工作。已获得上海市科技进步奖二等奖等省部级科技奖励10项,在SCI、EI、中文核心期刊发表论文十数篇,公开出版著作两部。

查看全部
目录

作者简介

前言

第1章 流程工业智能制造与数字化转型

1.1 新一轮智能制造发展战略

1.2 流程工业数字化转型战略

1.3 大数据分析和流程工业智能制造

第2章 工业大数据分析基础

2.1 工业大数据治理

2.2 流程工业大数据治理案例

2.3 大数据采集技术

2.4 大数据存储技术

2.5 大数据分析技术

2.6 大数据可视化技术

2.7 大数据分析方法

第3章 天然气开发行业的大数据分析

3.1 天然气开发行业信息化现状

3.2 天然气开发行业的大数据分析需求

3.3 天然气开发行业的大数据来源与特点

3.4 天然气开发行业的大数据解决方案

3.5 天然气开发行业的大数据分析方法

3.6 天然气开发行业的大数据分析案例

3.7 总结

第4章 炼油化工行业的大数据分析

4.1 炼油化工行业信息化现状

4.2 炼油化工行业的大数据分析需求

4.3 炼油化工行业的大数据来源与特点

4.4 炼油化工行业的大数据解决方案

4.5 炼油化工行业的大数据分析方法

4.6 炼油化工行业的大数据分析案例

4.7 总结

第5章 化工行业的大数据分析

5.1 化工行业信息化现状

5.2 化工行业的大数据分析需求

5.3 化工行业的大数据来源与特点

5.4 化工行业的大数据解决方案

5.5 化工行业的大数据分析方法

5.6 化工行业的大数据分析案例

5.7 总结

第6章 钢铁行业的大数据分析

6.1 钢铁行业信息化现状

6.2 钢铁行业的大数据分析需求

6.3 钢铁行业的大数据来源与特点

6.4 钢铁行业的大数据解决方案

6.5 钢铁行业的大数据分析方法

6.6 钢铁行业的大数据分析案例

6.7 总结

第7章 电力输电线路运维的大数据分析

7.1 电力输电线路运维信息化现状

7.2 电力输电线路运维的大数据分析需求

7.3 电力输电线路运维的大数据来源与特点

7.4 电力输电线路运维的大数据解决方案

7.5 电力输电线路运维的大数据分析方法

7.6 电力输电线路运维的大数据分析案例

7.7 电力输电线路运维大数据技术展望

7.8 总结

第8章 总结与展望

8.1 流程工业与互联网下半场的结合

8.2 流程工业需要建立大数据文化

参考文献

致谢

读者调查表

电子工业出版社编著书籍推荐表

反侵权盗版声明

查看全部
书评
查看更多
请您登录后发表评论 登录 | 注册
我的评分:
提交
0/400